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The limits of applicability of the Redlich-Kister, NRTL and LEMF equations when applied 
to heterogeneous systems are specified. These limits follow from the requirement of solvability of 
relations of the equality of activities in coexisting phases on the one hand and of the mono­
tonous dependence of activity coefficients on the other hand. 

In a number of works, the applicability of the Redlich-Kister!, NRTL (reU,3) and 
other equations4 ,5 have been investigated systematically for the thermodynamic 
description of homogeneous systems, whether from the point of view of the concentra­
tion6 -16 or temperature dependence 1 7 -19. However, comparatively little attention 
has been paid hitherto to the examination of the applicability of those equations 
to heterogeneous systems 7 ,11,20,21, though it is ""ell-known that in some cases, use 
of the Redlich-Kister or NRTL equations results in a qualitatively false description 
of the respective heterogeneous system. Probably the first ones who stated these 
facts in connection with the NRTL equation were Guffey and Wehe 7 • 

Considering that the constants of empirical relations for GE for heterogeneous 
systems are usually determined on the basis of mutual solubility of components 
(the compositions of coexisting phases are denoted by Xl and Xl) from the relations 

(1) 

it is possible to determine in this way only two parameters at one temperature. 
In case of three-parameter equations, the third parameter must be chosen, and its 
value may considerably influence the dependence obtained. The parameters calculated 
on the basis of Eq. (1) give a certain GE = f(xl) dependence and so the course 
of activity coefficients which are dependent on the equation employed. 

If we do not want to limit our investigation of the applicability of the equations 
to an actual system, it is necessary to define in advance the courses of GE or activity 
coefficients which will be considered as "normal". Three types of the courses of activ­
ity coeficients or GE on composition were considered in worksl6 ,21,22 - see Fig. 1: 
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a) There exists an only extreme (a maximum in case of positive deviations from 
Raoult's law) and no inflex point on the curve GE(Xl)' The courses of activity coef­
ficients as well as of their ratio are monotonolls functions of composition (Fig. 1, 
first column). 

b) There exists one extreme and one inflex point on the curve GE(Xl)' The curve 
of activity coefficients and of their ratio exhibits an extreme at the composition 
which corresponds to the inflex point GE(Xl) (Fig. 1, second column). 

c) There are two extremes and one inflex point on the curve GE(Xl) (so-called 
an S-shaped course; Fig. 1, third column). The activity coefficients exhibit an extreme 
on dependence on compositions, and besides, the logarithms of limiting activity 
coefficients L j = In y;'" have oposite signs. 

With strongly nonideal systems (with positive deviations from RaouIt's law) 
and above all with heterogeneous systems, the only case of a system23 is known to the 

a 
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I 

FIG. 1 

The basic types of the course of GE/(RT), activity coefficients and their ratio in dependence 
on composition 
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authors which does not pertain to the first group. For this reason, the course ap­
pertaining to the first group was required when verifying the applicability of equa­
tions to the description of heterogeneous systems whereas the other variants were not 
considered "normal". 

Here it is necessary to emphasize that the behaviour of real systems may naturally 
fall under the groups b) and c) even if probably seldom. However, some equations 
with the parameters determined by solving Eqs (1) give the courses belonging to b) 
or c), which is then at variance with the experimental reality. The limit of applicability 
resulting from the fact that the solution of equations for the equality of activities (1) 
docs not exist at all, is, of course, of another kind. 

Deter/1/ination of the Limit of Applicability of the Redlich-Kister 
alld NRTL Equations 

The limits of applicability have been determined for the three-constant Redlich-Kis­
ter equation I 

(2) 

and for the N RTL equationZ 

CE/(RT) = xlxz[TzICzd(XI + X2C21 ) + TI2 C12 /(X Z + X1C12)] ' (3) 

C12 = exp (-O(T12), C21 = exp (-O(T21 ), 

where CE is the molar excess Gibbs energy, R the gas constant, Tthe absolute tempera­
ture, Xl(XZ = 1 - XI) the mole fraction of the first component, b, c, d and T1Z ' T21 , 0( 

the parameters of the Redlich-Kister and NRTL equation, respectively. 

When determining the limit of applicability, we proceeded tentatively. The values 
of x I (composition of the conjugate phase) were chosen to a fixed value of XI (com­
position of the first phase), and for the given pair x I, X I the parameters b, c of the 
Redlich-Kister equation (d = 0, or d = 1/3) and Tw TZI of the NRTL equation 
(for a given value of O() were calculated. On the basis of the parameters calculated, 
the limiting activity coefficients were determined 

L1 = In y~ = b - c + d, L2 = In y~ = b + c + d (3a) 

for the Redlich-Kister or 

(3b) 
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for the NRTL equation, as well as the coefficients 

lim a In ydax i • (4) 
Xt-+ O 

These coefficients represent the slope of the dependence In Yi = f(Xi) at the con­
centration ends. The necessary but not sufficient condition for the course obtained 
to belong to the first group specified at the beginning of this work is identical sign 
of coefficient (4) for both components. These coefficients for the Redlich-Kister 
and NRTL equations are expressed by the relations 

lim a In Yl/iJX l = -2b + 6c - 10d, (5a) 
XI-+O 

lim a In Y2/iJx2 = -2b - 6c - 10d, (5b) 
Xl-+O 

lim a In Yl/iJXI = -2T21 /G21 - 2T12G~2 , (6£1) 
XI-+O 

lim iJ In Y2/iJx2 = -2TdG12 - 2T21G~1 • (6b) 
XI-+O 

Results of the calculations are given for the Redlich-Kister equation in Fig. 2 and for 
the NRTL equation in Figs 3 and 4. 

With the Redlich-Kister two-constant equation (d = 0), a narrow concentration 
range of applicability is surprising at the first glance which can be considerably 
extended on using the value d = 1/3. The value d = 1/3 is the maximum one which 
still ensures a single two-phase region in binary systems and invariably convex 
course of the second derivative with respect to composition 12. It is possible to use 
even higher values of d than 1/3 but in such a case it is always necessary to investigate 
carefully the obtained course of activity coefficients, the second order derivative 
of the Gibbs energy, etc. 

The results obtained prove the analysis performed formerll 2 • The points A, B 
in Fig. 2 correspond to the point of intersection of the curve delimiting the applicability 
of the Redlich-Kister equation with d = ° and the line Xl = Xl' which means 
that the points A, B correspond to the maximum and minimum values of Xl (or Xl) 
for which the compositions of both phases merge, i.e. to the critical point x~. From the 
analysis of the Redlich-Kister equation followed 12 that when retaining the mono­
tonous course of activity ciefficimts, the Rcdlich-Kistc;:r equation may be used 
for x~ E 0/3, 2/3) with d = ° and for x~ E <0'215, 0'795) with d = 1/3. 

For the NRTL equation (Figs 3 and 4), the applicability depends on the para­
meter 0( as well. For usual values of 0(, the limits of applicability are given in Fig. 3; 
for 0( > 0'426 the limits are given with more precision in Fig. 4. It is evident that 
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higher values of a (for a > 0) extend the concentration range of applicability of the 
NRTL equation. It is apparent from the comparison of Figs 2 and 3 that the NRTL 
equation with a = 0·2 covers the concentration region only slightly larger than the 

lOr 
09 

0- 0'2 x, 

1-'0. 2 

The limits of applicability of the Redlich­
-Kister equation with d= 0 and d'~ 1/3 
in dependence on xt and xJ • The equation 
is applicable for the values of Xt , xt from 
lenticular region 

110.4 

Upper and lower limits of applicability of the 
NRTL equation for IX > (J'426 

FIG. 3 

Upper limits of applicability of the NRTL 
equation in dependence on the parameter It. 

--- (from above down) IX = 0'6; 0'5; 0'4; 
0'3; 0·2. ----- ex = -0'5, -·-·-IX = -1 

.--- --- ~--------------------------------
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Redlich-Kister equation with d = 1/3. It is possible to read from Fig. 3 the limits 
of composition of the critical point which are x~ E <0·20, 0·80) for IX = 0·20 whereas 
for IX = 0·40 they are extended tox~ E <0·135, 0·865) on satisfying the requirement 
of monotonous course of activity coefficients. 

The applicability of the NRTL equation with IX = -0·50 and IX = -1 (LEMF 
equation3) was also verified. A monotonous course of activity coefficients was found 
in each case. The limits of applicability given in Fig. 3 correspond to the limits 
of solvability of system of equations (1). For instance, for Xl = 0·05 and Xl = 0·25 
the solution of the system was not found for IX = -1 whereas for Xl = 0·05 and 
Xl = 0·32 it was, and condition (4) were fulfilled. 

When using IX > 0·426 in the NRTL equation, the boundary curves in Fig. 3 
for IX = 0·50 and IX = 0·60 correspond only to the upper limit. Use of these values is, 
on the other hand, limited moreover from below (Fig. 4), viz. by the solvability 
of system of equations (1). Only the hatched areas correspond to the regions where 
system (1) has "acceptable" physical solution. 

It is well-known9 - 11 that the NRTL equation is formally very flexible and can yield more 
solutions but only one of them has the lowest values of the Gibbs energy (neglecting the existence 
of isolated points). During the computations carried out in this work, a continuous series of con­
centrations was always calculated, the solution found at a concentration being used as the first 
approximation for the next concentration of coexisting phases. At the beginning we started for 
()( < 0·426 from the symmetric system xJ = x2 . On the contrary, for ()( > 0·426 from the point 
xl = Xl + 0·01, the parameters Til' T2J corresponding to the critical point x\ = xl given 
in the literature!! being used as the first approximation. 

It is evident that the NRTL equation with IX > 0·40 allows to describe systems 
with critical points outside the range x~ E <0·135, 0·865) retaining the monotonous 
course of activity coefficients. When choosing IX, we are, especially for aqueous 
systems, on the other hand limited by the second limit which correspond to the solva­
bility of system of equations (1). 

DISCUSSION 

The limits of applicability of the Redlich-Kister equation with d = ° and d = 1/3 
and of the NRTL equation with different values of IX for thermodynamic description 
of heterogeneous systems are presented in Figs 2 - 4. These limits followed partly from 
the requirement of monotonous course of activity coefficients and partly from the 
requirement of solvability of system (1). With the LEMF equation it was further 
found out that for heterogeneous systems, the monotonous course of activity coef­
ficients was obtained in all cases. 

From this point of view the judgement of other equations (van Laar, UNIQUAC 
(ref.4 ), modified Wilson equationS) was also performed. The van Laar two-constant 
equation, with respect to the fact that it is unable to describe an extreme on the 
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dependence of activity coefficients, is with regard to the above-mentioned criteria, 
applicable within the entire range of Xl and Xl' 

The modified Wilson equation and the UNIQU AC equation allow, under usual 
conditions, to describe an extreme in activity coefficients only in a system with low 
or medium deviations from ideality (for the UNIQU AC equation this case can occur 
more easily in systems with the values of qi ~ 1), and therefore they are from this 
point of view as well more acceptable than the NRTL or Redlich-Kister three-con­
stant equations. 
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